Feed

Aplikasi Linear Programming

Linear programming adalah bidang ilmu yang digunakan dalam optimisasi karena beberapa alasan. Pada pembahasan sebelumnya dalam blog ini, anda telah mengetahui mengenai konsep metode transportasi yang melibatkan linear programming dan goal programming, untuk lebih jelasnya mengenai pembahasan sebelumnya bisa anda lihat disini. Adapun pembahasan kali ini akan dititik-beratkan pada contoh aplikasi linear programming pada manajemen maupun dalam optimisasi usaha.
Banyak masalah-masalah praktis dalam riset operasi dapat dinyatakan sebagai masalah pemrograman linear. Beberapa kasus khusus linear programming, seperti masalah aliran jaringan dan aliran multi-komoditas yang dianggap cukup penting untuk diteliti dengan suatu algoritma khusus untuk meraih solusi. Sejumlah algoritma untuk masalah optimisasi lain dioperasikan dengan memecahkan masalah LP sebagai sub-masalah. Secara historis, ide-ide dari pemrograman linear telah menginspirasi banyak konsep pusat teori optimisasi, seperti dualitas, dekomposisi, dan pentingnya kecembungan dan generalisasi. Demikian pula, linear programming banyak digunakan dalam ekonomi mikro dan manajemen perusahaan, seperti perencanaan, produksi, pengangkutan, teknologi dan isu-isu lainnya. Walaupun isu-isu manajemen modern yang selalu berubah, sebagian besar perusahaan ingin memaksimalkan keuntungan atau meminimalkan biaya dengan sumber daya yang terbatas. Oleh karena itu, banyak hal dapat dikategorikan menjadi masalah pemrograman linear.

Ilustrasi sederhana:
Misalkan seorang petani memiliki sebidang tanah pertanian, misalnya seluas 5 hektar, yang akan ditanam dengan gandum atau kedelai atau kombinasi dari keduanya. Petani hanya memiliki pupuk NPK (P) yang terbatas dan hanya sedikit insektisida (I) yang digunakan, maka masing-masing yang dibutuhkan dalam jumlah yang berbeda per satuan luas untuk gandum adalah (P1, I1) dan kedelai adalah (P2, I2). Misalkan harga jual gandum adalah Rp.5.000/kg, dan harga kedelai adalah Rp.7.000/kg. Jika ladang yang ditanami gandum dan kedelai kita nyatakan dengan X1 dan X2 berturut-turut, maka jumlah yang optimal untuk ditanami gandum dengan kedelai dapat dinyatakan sebagai masalah pemrograman linear (LP) sebagai berikut:
Diketahui:
Luas lahan : 5 Ha
Jumlah pupuk (terbatas) : P
Jumlah insektisida (terbatas) : I
Harga Jual gandum : Rp. 5.000/kg
Harga Jual Kedelai : Rp. 7.000/kg
Ladang tanam gandum : X1
Ladang tanam kedelai : X2

Maka dengan demikian, perumusan algoritmanya menjadi:
5000(X1) + 7000(X2) (memaksimalkan keuntungan, keuntungan merupakan fungsi sasaran)
X1 + X2 < 5 Ha (keterbatasan lahan)
P1X1 + P2X2 < P (keterbatasan pupuk terhadap lahan)
I1X1 + I2X2 < I (keterbatasan insektisida terhadap lahan)
X1 > 0, X2 > 0 (area yang tidak dapat ditanami)

Maka bentuk matriksnya dapat disusun sebagai berikut:
Memaksimalkan keuntungan >> Subjek untuk



Ilustrasi dalam Manajemen:

Misalkan seorang manajer produksi bertanggung jawab untuk penjadwalan bulanan produksi suatu produk tertentu untuk perencanaan selama dua belas bulan. Untuk tujuan perencanaan, manajer diberi informasi berikut:
1. Total permintaan untuk produk dalam bulan j adalah dj, untuk j = 1, 2,. . ., 12. Ini dapat berupa nilai-nilai yang ditargetkan atau didasarkan pada perkiraan.
2. Biaya memproduksi tiap unit produk dalam bulan j adalah cj (dolar), untuk j = 1, 2,. . ., 12. Tidak ada biaya setup / biaya tetap untuk produksi.
3. Biaya persediaan per unit untuk bulan j adalah hj (dolar), untuk j = 1, 2,. . ., 12. Ini dikeluarkan pada setiap akhir bulan.
4. Kapasitas produksi untuk bulan j adalah mj, untuk j = 1, 2,. . ., 12.
Tugas manajer adalah untuk menghasilkan jadwal produksi yang meminimalkan total produksi dan biaya persediaan selama 12 bulan perencanaan produksi.
Untuk memfasilitasi perumusan pemrograman linear (LP), manajer memutuskan untuk membuat penyederhanaan asumsi sebagai berikut:
1. Tidak ada persediaan pada awal bulan pertama.
2. Unit produksi dijadwalkan dalam bulan j, dan segera dipersiapkan untuk pengiriman pada awal bulan itu. Ini berarti berlaku bahwa tingkat produksi terbatas.
3. Kekurangan produk tidak dimungkinkan terjadi pada akhir setiap bulan.
Untuk memahami hal-hal tersebut secara lebih baik, mari kita perhatikan bulan pertama. Misalkan, untuk bulan itu, yang direncanakan sama dengan tingkat produksi 100 unit dan permintaan, d1, sama dengan 60 unit. Kemudian, sejak awal persediaan adalah 0 (Asumsi No. 1), tingkat persediaan akhir untuk bulan pertama akan menjadi 0 + 100 – 60 = 40 unit. Perhatikan bahwa semua dari 100 unit produk akan segera tersedia untuk pengiriman (Asumsi No. 2); dan terhadap permintaan d1 = 60, kita harus menghasilkan tidak kurang dari 60 unit pada bulan pertama, untuk menghindari kekurangan (Asumsi No. 3). Misalkan bahwa biaya produksi pada bulan 1 (c1) = 15 dan Biaya persediaan (h1) = 3. Kemudian, total biaya untuk bulan pertama dapat dihitung sebagai:
15 × 100 + 3 × 40 = 1.380 dolar.
Pada awal bulan kedua, akan ada 40 unit produk dalam persediaan (karena permintaan pada bulan pertama adalah 60, sedangkan yang diproduksi adalah 100), dan yang sesuai persediaan akhir dapat dihitung sama, berdasarkan inventaris awal, tingkat produksi yang telah dijadwalkan, dan total permintaan untuk bulan itu. Skema yang sama kemudian diulang sampai akhir seluruh perencanaan selama 12 bulan.

Setelah dihasilkan total biaya hingga bulan ke-12, maka kita dapat menentukan formulasi linear programming untuk masalah ini:
1. Variabel keputusan:
Manajer bertugas untuk menetapkan tingkat produksi untuk setiap bulan. Oleh karena itu, telah disusun 12 variabel keputusan (berdasarkan jangka waktu produksi selama 12 bulan):
Xj = tingkat produksi pada bulan j, j = 1, 2,. . ., 12.

2. Fungsi Sasaran
Mari kita lihat kembali pada bulan pertama. Dari pembahasan di atas, kita mendapatkan:
Biaya produksi adalah sama dengan biaya produksi dikali dengan tingkat produksi atau c1×1.
Biaya persediaan adalah sama dengan h1 (x1 – d1), dengan asumsi bahwa tingkat persediaan akhir (x1 – d1) masih ada, atau tidak negatif.
Oleh karena itu, total biaya untuk bulan pertama sama dengan c1×1 + h1 (x1 – d1)

Untuk Bulan kedua dapat kita nyatakan sebagai berikut:
Biaya produksi adalah sama dengan c2×2.
Biaya persediaan akhir sama dengan h2 (x1 – x2 – d1 + d2), dengan asumsi bahwa tingkat persediaan akhir, x1 – d1 + x2 – d2, adalah masih ada. Berikut ini dari fakta bahwa tingkat persediaan awal bulan ini adalah x1 – d1, tingkat produksi untuk bulan ini adalah x2, dan permintaan untuk bulan ini adalah d2.
Oleh karena itu, total biaya untuk bulan kedua sama dengan c2×2 + h2 (x1 – d1 + x2 – d2).
Maka Total biaya produksi untuk seluruh perencanaan selama 12 bulan adalah:

Karena tujuan kita adalah untuk meminimalkan total biaya produksi dan biaya persediaan, maka fungsi sasaran dapat dinyatakan sebagai:


3. Fungsi Kendala
Karena kapasitas produksi untuk bulan mj adalah j, maka kita memerlukan:
Tingkat produksi untuk bulan j < kapasitas produksi untuk bulan j (xj < mj)
untuk j = 1, 2,. . ., 12; dan karena kekurangan tidak diperbolehkan (Asumsi No. 3), kita memerlukan:
Tingkat produksi untuk awal bulan k – total permintaan awal bulan k > 0, atau dengan notasi:

untuk j = 1, 2,. . ., 12. Telah menghasilkan sebanya 24 fungsi kendala. Tentu saja, karenanya tingkat produksi xj tidak boleh negatif.

Maka dengan demikian dapat disimpulkan bahwa fungsi Linear Programming untuk manajemen selama 12 bulan adalah:
Variabel Keputusan + Fungsi Sasaran * Fungsi Kendala
Atau dengan formulasi:

subjek untuk:
xj < mj, untuk j = 1,2,3,…..12.

, untuk j = 1,2,3,…..12.
xj > 0, untuk j = 1,2,3,….12.

Dengan demikian telah kita dapatkan fungsi linear programming dengan 12 variabel keputusan, 24 fungsi kendala, dan 12 fungsi kendala non-negatif. Dalam pelaksanaannya, kita perlu mengganti cj, hj, dj, dan mj dengan nilai-nilai numerik.
Pada pembahasan berikutnya, akan dibahas pengaplikasian linear programming pada kasus investasi dengan bantuan perangkat lunak LINDO (linear interactive discrete optimization).(yoz)

No Response to "Aplikasi Linear Programming"

Post a Comment

Copyright © 2009 Statistik 4 Life - βeta All rights reserved.